Title: Microplastics Quantification

Course Description:

Microplastics Quantification is a hands-on, field-to-lab training course designed for industry professionals, early-career scientists, government researchers, academic specialists, nonprofit organizations, and analytical laboratory personnel who seek to deepen their expertise in microplastic sampling, processing, and analysis. This course covers a comprehensive range of methods—from initial field collection and laboratory protocols to advanced analytical techniques like FTIR, Raman, and Py-GC/MS. Participants will learn from experts while engaging in real-world sampling activities along Oahu's coasts, gaining valuable insight into marine debris challenges and exploring cutting-edge research shaping the future of microplastic quantification.

Key Learning Outcomes:

- Understand and apply various microplastic sampling methods to different environmental media (water, sand, sediment).
- Acquire hands-on experience with established processing techniques and analytical protocols Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and pyrolysis gas chromatography and mass spectroscopy (py-GC/MS).
- Explore the complementary nature of multiple analytical approaches and their pros and cons.
- Compare various standardized methods (ISO, GLP, ASTM) for accurate and reproducible quantification.
- Gain familiarity with the broader context of marine pollution prevention, mitigation, and policy implications in the Pacific region.

Instructional Approach:

This course combines practical fieldwork with laboratory demonstrations, short focused lectures, and expert-led discussions. Participants will collect samples via buoyancy separation device (BSD) and manta trawl net, process collected materials using various standard techniques, and perform in-depth analyses using state-of-the-art instrumentation. Facility tours, guest lectures, and references to international methods (CSIRO, ASTM) will supplement the core curriculum, providing a global perspective. Students will interact with instrument specialists and research leaders, ensuring comprehensive exposure to current best practices and emerging trends in microplastic analysis.

Sample Course Activities & Topics

Activity Type	Sample Topics & Exercises	Learning Objectives
Foundational Learning	 Participant introductions and course goals Overview of microplastic issues Laboratory safety training & instrument orientation 	Establish a contextual understanding of microplastic pollution, clarify course expectations, and ensure participant safety
Field Sampling Techniques	- Manta trawl sampling in water - BSD sampling - Initial sample handling and documentation	Gain hands-on experience with real-world sampling methods, understand sample integrity, and prepare samples for analysis
Sample Processing Methods	 Trash Time Machine (TTM) Sieving and DSD (Density Separation Device) techniques Extraction demonstrations 	Learn and apply standardized protocols for isolating and preparing microplastics from various environmental matrices
Advanced Sampling & Methodologies	 NOAA 100m transect method CSIRO timed hand- picking method Intro to analytical methods (μFTIR, μRaman, py-GC/MS) Review of State of CA accredited methods for WWTP samples 	Explore a range of complementary approaches and methods, understand their pros/cons, and become familiar with cutting-edge industry standards

Analytical Instrumentation & Techniques	 In-depth FTIR, Raman, Py-GC/MS training Technique comparison and suitability for different sample types Data interpretation and method optimization 	Develop competency in selecting and using appropriate analytical tools for microplastic identification and characterization
Facility Tours & Applied Context	 Tour of the Plastic Recycling Research Facility (PRRF) Hands-on sorting exercises Discussion of real- world implications of data 	Connect laboratory methods to large- scale operations, observe real-world recycling practices, and consider how data informs environmental decision- making
Quantification, Interpretation & Conclusion	 Quantitative vs. qualitative analyses Addressing sample matrix challenges and contamination issues Method comparison, result interpretation, and best practices Final discussions, certificate distribution, and networking 	Refine analytical reasoning, build confidence in data interpretation, understand the complexities of quantifying microplastics, and plan for future applications